Members of a dinoflagellate luciferase gene family differ in synonymous substitution rates.
نویسندگان
چکیده
Regulation and evolution of dinoflagellate luciferases are of particular interest since the enzyme is structurally unique and bioluminescence is under circadian control. In this study, three new members of the dinoflagellate luciferase gene family were identified and characterized from Pyrocystis lunula. These genes, lcfA, lcfB, and lcfC, also exhibit the unusual structure and organization previously reported for the luciferase gene of a related dinoflagellate, Lingulodinium polyedrum: three repeated domains, each encoding an active catalytic site, multiple gene copies, and tandem organization. The histidine residues involved in the pH regulation of L. polyedrum luciferase activity, and implicated in the regulation of flashing, are also fully conserved in P. lunula. The interspecific conservation between the individual luciferase domains of P. lunula and L. polyedrum is higher than among domains intramolecularly, indicating that this unique gene structure arose through duplication events that occurred prior to the divergence of these dinoflagellates. However, P. lunula luciferase genes differ from L. polyedrum in several respects, notably, the occurrence of an intron in one gene (lcfC), a 2.25-kb intergenic region connecting lcfA and lcfB, and, of particular interest, an invariant rate of synonymous (silent) substitutions along the repeat domains, in contrast to L. polyedrum luciferase, where the occurrence of synonymous substitutions is practically absent in the central region of the domains.
منابع مشابه
Molecular evolution of dinoflagellate luciferases, enzymes with three catalytic domains in a single polypeptide.
Enzymes with multiple catalytic sites are rare, and their evolutionary significance remains to be established. This study of luciferases from seven dinoflagellate species examines the previously undescribed evolution of such proteins. All these enzymes have the same unique structure: three homologous domains, each with catalytic activity, preceded by an N-terminal region of unknown function. Bo...
متن کاملWhole-Gene Positive Selection, Elevated Synonymous Substitution Rates, Duplication, and Indel Evolution of the Chloroplast clpP1 Gene
BACKGROUND Synonymous DNA substitution rates in the plant chloroplast genome are generally relatively slow and lineage dependent. Non-synonymous rates are usually even slower due to purifying selection acting on the genes. Positive selection is expected to speed up non-synonymous substitution rates, whereas synonymous rates are expected to be unaffected. Until recently, positive selection has s...
متن کاملPartitioning the variation in mammalian substitution rates.
We have used analysis of variance to partition the variation in synonymous and amino acid substitution rates between three effects (gene, lineage, and a gene-by-lineage interaction) in mammalian nuclear and mitochondrial genes. We find that gene effects are stronger for amino acid substitution rates than for synonymous substitution rates and that lineage effects are stronger for synonymous subs...
متن کاملPatterns of nucleotide substitution among simultaneously duplicated gene pairs in Arabidopsis thaliana.
We characterized rates and patterns of synonymous and nonsynonymous substitution in 242 duplicated gene pairs on chromosomes 2 and 4 of Arabidopsis thaliana. Based on their collinear order along the two chromosomes, the gene pairs were likely duplicated contemporaneously, and therefore comparison of genetic distances among gene pairs provides insights into the distribution of nucleotide substit...
متن کاملVariable rates of evolution among Drosophila opsin genes.
DNA sequences and chromosomal locations of four Drosophila pseudoobscura opsin genes were compared with those from Drosophila melanogaster, to determine factors that influence the evolution of multigene families. Although the opsin proteins perform the same primary functions, the comparisons reveal a wide range of evolutionary rates. Amino acid identities for the opsins range from 90% for Rh2 t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biochemistry
دوره 40 51 شماره
صفحات -
تاریخ انتشار 2001